m
CM XM

CODUSMAXIMUS

(Hyper Perform

Functional Requirements Specification
Organisation: https://github.com/Hyperperform
Developers:

Rohan Chhipa 14188377

Avinash Singh 14043778
Jason Gordon 14405025

Updated October 23, 2016

Client

MagnaBC
http://www.magnabc.co.za/

https://github.com/Hyperperform
http://www.magnabc.co.za/

Contents
1 Introduction

2 Vision and Objectives

2.1 Vision . ..o e

2.2 Objectives
3 User Management

3.1 Scope ...

3.2 Domain Model

4 Integration and Pre-processing
4.1 Scope ... e e
4.2 Domain Model

5 Algorithms

5.1 Scope ... e
5.2 Domain Model e
5.3 Service Contract

6 Reporting

6.1 Scope e
6.2 Domain Model e
6.3 Service Contracts e e

7 Notifications
T.1 Scope . . .o
7.2 Domain Model

8 Forecasting
8.1 Service contracts e

10
10
11
11

13
13
14

14

1 Introduction

Many different tools are available for measuring the quality of products made, but very
few tools exist which assess the quality of the people making said products. People play
a huge role in a project, and trying to monitor each and every one becomes a tedious
task which diverts man power away from other more critical tasks. Whether it be for an
end of year evaluation, or attempting to assess the current status of a project, generating
a report on a staff member can help keep up productivity, as well as get them any help
they need in order to resume quality performance. By ensuring that there is constant
quality performance from each individual on a project, one can increase project quality
as well as reduce project risks such as loss of an important team member during a critical
stage of a project’s life-cycle.

2 Vision and Objectives

2.1 Vision

The vision of this project is to create an automated performance management system,
which can assess the performance and status of staff members, based on information
sourced through various software systems such as card readers, version control systems
and such. The system would make use of these external integrations as well as direct
contact with the staff members via either web dashboard or mobile phone, to generate
reports on the various staff members as well as add elements such as gamification and
monitor problems that may be occurring.

2.2 Objectives

The objectives for the Hyper Perform system are:

e To source information from various integrations and treat them as events to de-
termine performance.

e To generate real-time reports on staff members in order to evaluate performance
based on these events.

e To monitor staff members in order to determine possible causes of work detriment.

e To add a form of gamification to encourage productivity, and discourage slacking
and other bad behaviours.

e To make the system easily expandable to various other sub-systems.

3 User Management

3.1 Scope

package User Management| @ Scupey

Reset Master
Password

Super User Set Administrator
Privileges

Change Employee
Active State

Administrator

Request
Correction of
Personal Details

Employee

Change Dashboard
Settings

View All Personal
Details

Figure 1: User Management Scope

The scope of the user management module includes:

e Super user control over administrator rights given to individuals and only one
super user can exist at any moment.

e Administrators may add employees and manage their details.

e Administrators may add employee roles to employees registered, which will define
which algorithms and systems will influence their performance ratings.

e A user should be able to view all their personal details, and request change imme-
diately if something is wrong.

Note, it is assumed that a super user is not in anyway an employee within the system.
It is also assumed that an Administrator is automatically an employee of the system.
Administrators may not review themselves however they may change their own details.

3.2 Domain Model

package User Management] Domain Model U

«anumerations

UserEntity () EmployeeRole

7 enumeration literals
Super
| Administrator
Employee
|
|
|
|
| 1
Employee kel wenumerations
attributes 0.1 Pasition
-usersurname : String enumeration literals

-userMame : String
-userlD : String
-userEmail : String
-userPassword . String
-Role ; EmployeeRole
-Position : Position

Web Developer
Software Developer
Multimedia

Figure 2: User Management Domain Model

4 Integration and Pre-processing

4.1 Scope

package Integration and Processing [Scupe]/J

J.% " Received Event
Event Emitting System

- =
- wincludex

wincludes / .
I s
/ N
- Bt

______—l"'—' — ¢ Add to messaging

" PersistEvent queus
|uincluden

b

¢ Retrieved by Esper)

Figure 3: Integration and Pre-processing Scope

The scope of the integration module includes:

e Events are received through RESTful services that are made available to event

emitting system. There is no need for polling these systems.

e Each event is mapped to a JAVA POJO and is persisted. Along with being per-
sisted each event object is also placed onto a message queue where a CEP Engine

will act as the consumer on the other end.

e Algorithms are applied to the persisted data to generate reports.

4.2 Domain Model

package Integration and Pre-processing [Domain r.h:n:lel]/J

ContinuousintegrationAdapter -~ IntegrationAdapter

J i
VerzionControlAdapter

CalenderingAdapter

Entry SystemAdapter

Figure 4: Integration and Pre-processing Domain Model

5 Algorithms

Algorithms are used in the calculation of performance scores. The entire Algorithms
module is built using the Strategy design pattern. This allows for using different al-
gorithms during runtime to calculate the scores. Since the Strategy design pattern is
followed, new algorithms can easily be added with minimal code modification.

5.1 Scope

package Algorithms[@ Scope U

—~
" Receive Event Data

includes _——
h , Query
[Appropriate
‘. Algorithm To Use
\'\.
""-\-_______

-

Back End Server wincludes ¢

.-"'--F_-__ _---.-"'-. — E‘
/ Response)
f Object
I-,_ containing PA
AN Score

-

r’f Process Data Using
. Appropriate Algorithm

Figure 5: Algorithms Scope

The scope of the algorithms module includes:

e Determining which statistical algorithm will be appropriate with regards to the
employee.

e Different algorithms can be applied to different types of employees.

e Applying this algorithm to the data provided, and then presenting employee per-
formance scores accordingly.

5.2 Domain Model

Package Diagram Algorithms| Domain Model u

Algorithm

1algorithm [5]

operations
+calculateScorel : CalculateScoreRequest) : CalculateScoreResponse

3
|

Events

Event Data

Various events
gathered from
different

integrations

==uses>> l

— —|Standard Algorithm

Interface for
strategy

Concrete
_ |strategy for
algorithm

Figure 6: Algorithms Domain Model

5.3 Service Contract

package Algorithms| Service Contractu

1Algorithm

+caleulateScorel : CalculateScoreRequest) CalculateScoreResponse

operations

CalculateScor

+MName : Strlnlg
+StartDate : Timestamp
+EndDate : Timestamp

CalculateScoreResponse

tes

<<pre-conditions==
- Valid start and end date
- Employee exists
<<=post-conditions==
- Valid decimal score between the score range

| Exception |<]_|

TimePeriodException |

att
+Score : double

EmployeeNotFoundException |

Figure 7: Algorithms Service Contract

6 Reporting

The reporting component allows for the processing and generation of data. This data
allows users to see their current performance. The reporting component allows for gen-
eration of three types of reports: summarised and detailed reports as well as generation
of a performance score.

6.1 Scope

package Reporting] @ Scope u

7 Generate ™
Report On
Individual

enerate Report -
“J

Administrator

-~ Generate End -
of Year Report

———
- View Live

[Dashboard
"-\\ Report For Self

\‘H""-\-._

Figure 8: Reporting Scope

The scope of the reporting module includes:

e Administrators such as HR may request reports on individual employee’s perfor-
mance.

o All users, excluding administrators, may view their own dashboard which contains
information regarding their current performance and personal details.

10

6.2 Domain Model

package Reporting [Domain Model U

ReportGenerator
a s

Reporting

User Management

IReport ®

>]J UserEntity

—]

Algorithms

IndividuaIRepnrt| |Manageria|ﬂepurt

;]JIAIgorithm O
1.#

Figure 9: Reporting Domain Model

6.3 Service Contracts

package Reporting] Service Contractu

IReport ®
aperations <<pre-conditions==>
+getSummaryl : GetSummaryRequest) © GetSummaryResponse - Employee exist
— - Valid start and end date

<<post-conditions ==
- Object containing summary for all
applicable integrations returned

GetSummaryRequest

GetSummaryResponse

attributes
+Name : String
+StartDate : Timestamp
+EndDate : Timestamp

attrbutes
+GitHub : double
+Travis : double
+Issues : double

+EntryExit : double

TimePeriodException

EmployeeNotFoundException |

Figure 10: Get Summary Service Contract

11

package Reporting[Service Contra{tu

<<pre-conditions>>

- Employee exist
IReport [5] - Valid start and end date
- Integration must exist

operations
+getDetails(: GetDetailsRequest | - GetDetailsResponse)
<<post-conditions ==
- Object containing complete details
for the requested integrations
returned

GetDetailsRequest ‘ GetDetailsResponse | EMEERLion| TlmePerludExceptlun|
tes

+Type . Strin T :
+N)::ne Strlgg in_ ploy FuundEx(Eptlnn|

+StartDate : Timestamp
+EndDate : Timestamp

IntegrationDoesNotExist

0.1 0.1 0.1 l 0.1
GitDetails TravisDetails GitlssueDetails EntryExitDetails
tes a s etribut es
-Data : List=GitPush= -Data : List<TravisEvent= -Data : List<Gitlssue= -Data : List=AccessEvent=

Figure 11: Get Details Service Contract

package Reporting [Service C.nntractu

IReport
ol O <=pre-conditions ==
operapons [E | t 1 t
+getScore(: GetScoreRequest) : GetScoreResponse i S;l'lalll_tﬂg:; Erlr_lludsd:?:: must be valid

<zpost-conditions==
- PA score calculated using an algorithm is returned

GetScoreRequest GetScoreResponse
artnby all lies
-Name : String -Score : double

-StartDate : Timestamp
-EndDate : Timestamp

EmployeeNotFoundException |

Figure 12: Get Score Service Contract

12

7 Notifications

7.1 Scope

package Motifications [@ Scope]/J

Administrator

-

Back End Server /)
|: Forgot Password
-

Figure 13: Notifications Scope

The scope of the notifications module includes:

e When a new User is created by an Administrator, a notification will be sent to the
user with initial passwords and information.

e When a user forgets their password, a temporary password will be sent to the user
and more instructions to change their password.

13

7.2 Domain Model

package Notifications [Domain Model lJ

Notifications

INotification () NotificationQueue
User Management

Motification ;_|J UserEntity

Figure 14: Notifications Domain Model

8 Forecasting

The forecasting module is responsible for allowing the addition, modification and deletion
of forecasted values. These values are predictions made by management which employees
must try to conform to. Forecasted values may be used in conjunction with algorithms
to allow for a more accurate calculation of performance scores. Forecasted values are
contained in integrations. A manager is allowed to modify and add integrations along
with forecast values.

e To allow for pluggability the forecasting module consists of a contract. All realiza-
tions of the contract must adhere to the methods defined within the contract.

e Underlying representations of the forecasted values can be of any type and can be
stored in any manner deemed beneficial.

e Since the forecasted values can have any representation, all necessary logic with
regards to processing the data will be contained in the methods defined within the
contract. This removes 'plumbing code’ in the other components of the system.

e Since all forecast data processing occurs within the forecasting module only, it
can be seen as a layer of abstraction over the representations of the forecasts
themselves. The other components within the system will have no knowledge of
the representation and will have controlled access to the data through the given
contract.

14

e Representation of the forecast data can easily be changed without having to affect-
ing the rest of the system. Forecast representations may be: JSON, XML, plain
text etc.

8.1 Service contracts

package Forecasting| Service Cnntrﬂdu

<<pre-condition=>
-Integration must not already exist

-MNew integration must have atleast one role and value in it.
7777777 -Integration must be provided

]

IForecasting

operstions
+addintegration{ : AddintegrationRequest) : AddintegrationResp

<<post-conditions=>

-Integration add to forecasting list

-boolean response is returned to show whether or not the
integration was successfully added

attnbutes attnbute:

B butes
-data : String -added : Boolean

|

|

‘Imngmiun[xislsExnepﬁon | |IInnnl=FnundExneplion

Integration to be added wil be received as a
=tring, thus the responsibilty of mapping the
=tring to the appropriate representation is
kept within the module

Figure 15: Service contract for adding integrations

package Forecasting[Service Cuntradu

<<pre-conditions==
IF i ® - Integration must exist

gperations L __ _ _ _

ation{ : Deleteint tionResp }: Deletelnt tionRequest <<post-conditions=>

- Integration iz deleted
- Boolean value is return showing if deletion
was successful

grati q t grati P Exception
attnbutes attrbutes a

-integration : String -deleted : Boolean

Figure 16: Service contract for deleting integrations

15

package Forecasting[GetForecastTime ServicECUntrany

=<pre-conditions==

IForecasting

- Integration must exist

[J)

tions

+getForecastTime(: GetForecastTimeRequest) : GetForecastTimeResponse

- Time must be valid
— - Position must exist

==post-conditions=>

- Returns the forecast time for
requested integration

GetForecastTimeRequest GetForecastTimeResponse

ExistException
P

-integration : String
-position : String

ortributes

-time ; String

Faorecast time can only be:
Day
Week
Month

g ExistExce ption | ‘Imliﬂﬂmemepthn ‘

Figure 17: Service contract for getting a forecast timespan

package Forecasting[[f] GetForecastvalue Serwce[ontractlj

==pre-conditions==
- The integration must exist

IForecasting
operations

+getForecastvalue(; GetForecastValueRequest) : GetForecastvalueResponse

_ |- The position must exist

=<post-conditions=>

- Returns the forecast value of the requested
integration

GetForecastValueReguest GetForecastValueResponse

-integration : 5tring -value : double

-position ; String

ExistExce ption
P

| Exception | [

|

ExistExce prinn

Figure 18: Service contract for getting a forecast value

16

package Forecasting[Updatelntegration Sewiceﬁnntradu

IForecasting O

2 =3
+updateintegration(: UpdatelntegrationRequest) : UpdatelntegrationResponse

operation

UpdatelntegrationResponse UpdatelntegrationRequest

aitnbutes
-updated : boolean

attnibutes

-data : String

<=pre-conditions=>

- The integration being updated must exist
- The position being updated must exist
<=post-conditions=>

- Integration is updated

- Must return true or false depending on if
the integration was updated or not

IntegrationDoes NotExist | |PositionDoesNotExist

Figure 19: Service contract for updating a forecast value

package Ferecasting| Getintegrations Servicel:untractu

IForecasting ®

+getintegrations(: GetintegrationsRequest) : GetintegrationsResponse

operstions

<=pre-conditions=>

- At least 1 integration needs to exist

- There needs to be at least 1 position in
— _leach integration

<<post-conditions>>
- Allthe data as well as the size needs to
be returned

GetintegrationsRequest

GetintegrationsResponse
ainbuies o
-size ©int
-data : String

|htegraﬁnnDoesNotExist |

Figure 20: Service contract for getting all the forecast data

17

	Introduction
	Vision and Objectives
	Vision
	Objectives

	User Management
	Scope
	Domain Model

	Integration and Pre-processing
	Scope
	Domain Model

	Algorithms
	Scope
	Domain Model
	Service Contract

	Reporting
	Scope
	Domain Model
	Service Contracts

	Notifications
	Scope
	Domain Model

	Forecasting
	Service contracts

